RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College under University of Calcutta) B.A./B.SC. THIRD SEMESTER EXAMINATION, DECEMBER 2013

SECOND YEAR	

Date	: 18/12/2013		S	STATIS	-	ieneral)					
Time	: 11 am – 1 pm			P	aper :				Full Marks : 50		
1. A	nswer <u>any five</u> questions	s of the fol	lowin	ıg:							
a)) Define a χ^2 (chi squar	e) distribu	tion. S	State it	s densi	ty functi	on and find i	ts mean.	[4]		
b)	A random sample of size one is taken from exponential distribution with mean $\frac{1}{\theta}$, to test H ₀										
	against $H_1: \theta = 1$. Find	the proba	bilitie	es of ty	pe-I an	d type-I	errors of the	test :			
	Reject H_0 iff $x \ge 1$.								[4]		
c)		i) Define a randomized test.									
(p	ii) State the Neyman-pearson Fundamental lemma. d) If (T_i) is a sequence of estimators such that $F(T_i) \rightarrow 0$ and $Ver(T_i) \rightarrow 0$ as $n \rightarrow \infty$, then she										
u)	d) If $\{T_n\}$ is a sequence of estimators such that $E(T_n) \rightarrow \theta$ and $Var(T_n) \rightarrow 0$ as $n \rightarrow \infty$, the that T_n is consistent for θ .										
e)			param	neter λ	. Show	that (X	$_{1} + 2X_{2}$) is n	ot sufficient for	[4] λ. [4]		
f)											
,	where $X_{(r)}$ denotes the				1 1			L (3)	[4]		
g)) Show that for a sample	e of size tw	vo froi	mN(μ	$,\sigma^2),t$	he expec	ted value of t	he sample range	e is $\frac{2\sigma}{\sqrt{\pi}}$. [4]		
h)) If $X \sim Bin(n, p)$, find a								[4]		
2. A a)	nswer <u>any three</u> questio) Show that in samplin			-	lation 1	the sam	ole mean and	l the sample v	ariance are		
	-	dependently distributed. Find the sampling distributions. [5+									
b)) Derive the ML estima	tor of μ a	and σ	r^2 of a	norma	ıl distrib	ution. Check	that the estima	tor of µ is		
	unbiased. Find the stan	dard error	of the	e estin	nator.				[3+2+5]		
c)		-					-				
	ii) Find the test statis logarithmic transfo		ting t	he equ	ality o	f varian	ces of two n	ormal populatio	n by using		
	iii) Derive the Pearson		juare 1	test sta	tistics	for home	geneity and	independence o	f attributes,		
	clearly mentioning		-				• •		[3+4+3]		
d)	i) Define Likelihood	Ratio (LR) test.								
	ii) Find the LR size- when their variance				sting th	e equali	ty of means	of two normal	population		
	iii) A store manager w						-	-			
	and the number of test statistic and te		•		•		-	•			
	number of sick leav	ve taken.		-					-		
	Age (Years)		26	39	48	53	58				
	Sick Leave (Days) (Given $t_{0.025} = 2.77$		12 D	9	5	6	2		[2+4+4]		
	(0.025 - 2.77)	0 101 U.I 4	7						[2+4+4]		

e) i) Consider a random sample of size n from the exponential distribution with p.d.f. :

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x}, x > 0\\ 0, x < 0 \end{cases}$$

Find the maximum likelihood estimator for λ .

- ii) State Cramar Rao inequality.
- iii) Obtain the minimum-variance-bound estimator for μ on the basis of a random sample of size n from N(μ , σ^2) population, where σ^2 is known. [5+2+3]
- f) Let $(x_1, x_2, ..., x_{n_1})$ and $(y_1, y_2, ..., y_{n_2})$ be two independent random samples. Describe, in brief, the method adopted in Wald-Wolfowitz run test for testing the hypothesis the two samples come from the same distribution.

Show how the theory of runs may be used to test for the randomness of a sample. [6+4]

ち 後 の 後 の